

The Art of Pivoting - How You Can Discover More from Adversaries with Existing Information

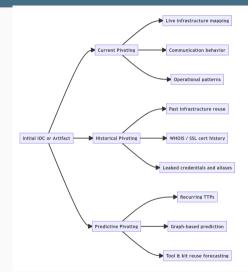
2025 Cyber Threat Intelligence Conference FIRSTCTI25 - Berlin, Germany

https://www.vulnerability-lookup.org

Alexandre Dulaunoy - alexandre.dulaunoy@circl.lu April 23, 2025 CIRCL https://www.circl.lu

Pivoting¹ is the analytical process of using one known artifact (such as an indicator of compromise (IOC), behavioral fingerprint, or identity trace) to uncover additional, related elements within a threat actor's infrastructure, toolkit, service, or operation. This technique enables analysts to expand the scope of an investigation, uncover hidden connections, confirm or attribute activity, and anticipate future adversary behavior.

¹The term "pivoting" can cause confusion. In this context, we refer to defender's pivoting using data points, distinct from the threat actor's lateral movement within a compromised infrastructure.


- The concept of *six degrees of separation*² suggests that any two individuals are connected through a chain of six or fewer social relationships.
- Similarly, in threat intelligence, pivoting is an analyst's method for uncovering hidden relationships, much like navigating a social graph. Instead of people, we're connecting data points and observables.
- Just as social networks reveal how people are linked, threat intelligence graphs reveal how indicators, infrastructure, and behaviors are interrelated, enabling defenders to map out and understand adversary ecosystems.

²Also referenced in popular culture as the "Six Degrees of Kevin Bacon," or in academic contexts as the "Erdős number," which measures how many co-authorship links separate a researcher from mathematician Paul Erdős.

Analytical Benefits of Pivoting

- **Current:** Understand how a threat actor interacts, communicates, and operates in real time.
- **Historical:** Reveal past connections between threat actors and specific infrastructure or identities.
- **Predictive:** Anticipate future actions based on recurring patterns, techniques, and operational habits.

- We strive to shift pivoting from an art to a science, making it reproducible, practical, and truly actionable for analysts.
- Yet, our perspective is sometimes clouded by **rigid models** or **legacy practices** that may no longer reflect today's threat landscape.
- Should we reconsider our reliance on models like the *Pyramid of Pain*, and critically assess how difficult it really is for adversaries to alter high-value indicators?
- Do threat actors always realize which traces they leave behind³, and can they truly gauge the intelligence value of what they expose?

³Remember where the "Anna-Senpai" handle eventually led?

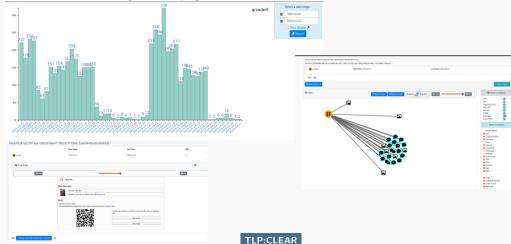
- In the AIL project⁴, we collect a wide range of sources—from social networks and Tor hidden services to forums and specific web infrastructure used by threat actors.
- We've implemented a dynamic correlation engine that allows easy integration of new object types for pivoting and analysis.
- This required a mindset shift: focusing more on outliers and overlooked data points, while challenging and discarding some of our older assumptions.

⁴https://ail-project.org/

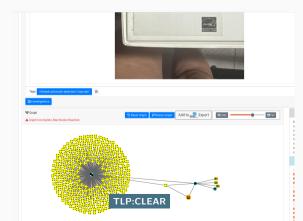
- MurmurHash3 is still widely used for favicon correlation. It enables quick discovery of Tor hidden services exposed on the clear web through simple hash-based pivoting.
- If MurmurHash3 is known to be flawed, why do we still use it? Because despite its weaknesses⁵, it remains effective—and threat actors rarely think to modify their favicons.
- An interesting angle: some actors may attempt to create hash collisions. Correlating on *colliding* favicons can itself become a pivoting technique. So why stop calculating them?

⁵The same question can be asked about other algorithms used in threat intelligence processing.

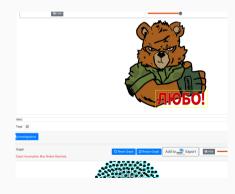
Favicons as Differentiators and Composite Correlation Points


©FA	icon_hash="198858945"					
				1643777803		
				Object type	First seen	Last seen
		40 results (27 unique IP) ,168 ms .Keyword Search.		🕇 faxicon	20241107	20250422
				Tags: 1		
	ot2P15s	godnotaba.space 🚥		1 investigations		
	982944		Header Products	₩ Graph	a C	east Graph 🖉 Resize Graph 🛛 Add to
		Figgeotradia – мониторния годратна в TOR 172 67.166.32 Bitted States of America: / California: / San Fra., ASR: 13335	HTTP11.1 200 OK Cannectien: close Transfer Encoding: chunked All Star: 15-492: max-86400			
	> US 💼 40	Organization: CLOUDFLARENET godinotaba.space 2025-04-01	Cacha-Control: no cache Cacha-Control: max age=0, no cache, s-maxage=10 Ch Ceche Stetue: DVNAMIC			
			OI-Ray: 9296bd1c59266012-PDX Gasters Type: test html; chasset-UTF-8 Date: Train 01-Avr 0101-14 (23:28 DAT)	1		
	1 4 m	0 O			0 8	
		https://godnotaba.pro 😐 💷				
					G	
		Fogeotradia — мененториянт годераты в TOR 172.67.176.118 United States of America. J. California. J. San Fra	HTTP11,1 200 OK Gannecilian: close			
		ASN: 13335 Organization: CLOUDFLARENET	Transfer Encoding: churked At Syx: th3="s43"; ma-86400 Cl Cache Staus: DYNAMIC Cl Fax: StochedetRecotasaLAX			
		godactaba.pro 2025-03-15	Contern Type: text html: charset-UTE-8 Date: Sat. 15 Mar 2025 12:44.05 GMT			
	Годнотиба — мониторинт го., 15 Годнотиба — мониторинт го., 11		Link: <a "="" api.w.org="" href="https://godnotaba.pro/wp-json/s:rel=" https:="">https://godnotaba.pro/wp-json/s:rel="https://api.w.org/" Mail: Presenant: Institute"/ Passent: https://api.w.org/"(https://api.w.org/")			

Even seemingly innocuous favicons can act as unique fingerprints—useful for correlating threat infrastructure across campaigns or layers (e.g., Tor vs. clear web).


Uncommon Indicator Extraction: QR Codes

• QR codes are increasingly seen across social networks, Tor hidden services, and even in ransomware negotiation pages.


Uncommon Indicator Extraction from Images: Barcodes

- Following a request from law enforcement, we implemented barcode extraction (Code 128, Code 39, Code 93, etc.).
- Barcodes turned out to be **valuable correlation points**, not only in large data leaks, but also in social media interactions involving threat actors.

Semantic and Textual Information in Images

- Images often contain valuable textual data, such as device numbers, identifiers, and embedded messages, that can be extracted for analysis.
- CRNN-based OCR models perform well and are highly efficient on modern hardware, making large-scale image parsing feasible.

- Has everything already been explored in HTML document classification, hashing, or structural similarity detection?
- Following a discussion with CERT-PL, we discovered that a **simple strategy yields** excellent results⁶ and led to the development of the dom-hash algorithm.

```
def _compute_dom_hash(html_content):
    soup = BeautifulSoup(html_content, "lxml")
    to_hash = "|".join(t.name for t in soup.findAll()).encode()
    return sha256(to_hash).hexdigest()[:32]
```

⁶Tested against LookyLoo dataset https://lookyloo.circl.lu

Fast Clustering of Tor Hidden Services using dom-hash

14c7f28ba66a97eee68c16a29	9f2f			
Object type	First seen	Last seen	Nb seen	
😭 dom-hash	20230404	20240509	122	
Tags: 🛨				
) Investigations				
Graph ්ට Re	set Graph 🛛 🎜 Resize Graph 🛛 Add	to Export Relation	P Full	St Direct Correlations
	000000			domain (item (Select Correlatio
3				Cookie Name Cryptocurrency Cryptocurrency Favicon G tracking DomHash HiHlash Screenshot Title
		TLP:CLEAR		 PGP Domain Item Mail

13/22

HTTP (version 1) response headers can act as subtle fingerprints $(HHHash)^7$ for linking threat infrastructure.

Object type	First seen	Last seen	Nb seen	/
😑 Mhash	20230802	20250421	6	
Tags: 🕢				
himediption				
🕈 Graph 📑	Diffester Graph	Add to 👷 Export	•••	T Direct Correlations
				domain
				Select Correlatio
				Cookie Name
				Cryptocurrency
				Decoded Etep
				Favicon
	`			C tracking DomHath
		000		HHHash
				Screenshot

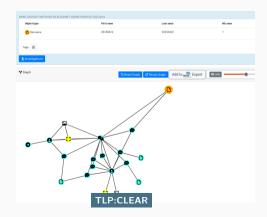
ow 12 + entries				Bearch		
	First Seen 1	Lest Seen 11	Teach 12	Lost days		
erver Date:Content-Type Transfer Encoding ConnectionSet-Cookie X-Cookie X-Cookie Status:Content-Encoding	20240422	20250421	2927			
erver Date Content-Type Content Langth Connection Set Cookie last-modified stag X-Cache-Status Accept-Ranges	20250201	20250421	781			
Net Server Jagsade Connection: Last Modified ET ag Accept Ranges Vary Dortent Encoding Content Length Content Type	20230405	20250421	76			
Inte Server Jagsude Connection: Last Modified ET ag Accept Ranges Content Length: Content Type	20230405	20250421	69			
ate Server Upgrade Connection: Last Modified STag Accept Ranges Content Length: Vary Content-Type	20230405	20250421	33			
arke Server Jappade Connection Last Modified ETag Accept Ranges Vary Dorters Encoding Transfer Encoding Content Type	20230405	20250421	32			
Nite Server Link Upgrade: Connection: Vary Content-Encoding Content Length: Content-Type	20230405	20250421	27			
iate Server Acones Control Allow Origin Acones Control Allow OnderstalicX Control-Type Options:X Robots-Tag Sapline: Cache- InstructUpgrade:Connection: Yary:Content-Encoding Content-Langth-Content-Type	20230405	20250421	8			
nin: Brever: A Robots Tag LinkCk. Content - Type-Options: Across Control Expose-Headers: Access: Control Allow- leaders: Allow: Yary Jagsude: Connection: Content: Encoding Content Length: Content. Type	20230802	20250421	•			
Net Server Expires Cache Control Link Upgrade Connection Very Content Encoding Content Length Content Type	20230412	20250421	5			

⁷https://www.foo.be/2023/07/HTTP-Headers-Hashing_HHHash

TLP:CLEAR

Another Simple Correlation? — Cookie Names

• Custom or reused cookie names⁸ can serve as low-noise indicators for linking **attacker-controlled web infrastructure**.



⁸The value of the cookie are also interesting but correlation cannot be used as it without further processing

TLP:CLEAR

An Even Simpler Correlation Indicator? — Filenames

- In threat intelligence, filenames are often dismissed as unreliable or noisy indicators that may lead to false conclusions.
- However, in some cases—especially on social networks or in leak dumps—filenames can carry meaningful context that reveals key aspects of a threat actor's activity.

Indicators That Threat Actors Should Avoid—But Still Use

- It is **commonly assumed that threat actors avoid including labels or metadata** that could link their infrastructure or even their operational teams.
- However, our regular crawling of Tor hidden services revealed that Google Analytics tracking codes⁹ were reused across multiple sites, uncovering unexpected and meaningful correlations.

⁹Based on monthly crawling of Tor hidden services, which explains the distribution shown in the graph.

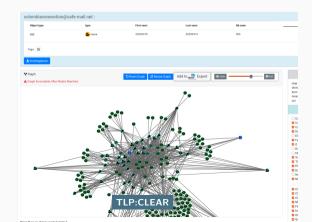
Even "Weak" Indicators Like Google Analytics Can Be Powerful in Composite Correlation

G-D66Z012HYD			
G-D66Z012HYD			
Object type	First seen	Last seen	Nb seen
G gracker	20241107	20250422	3
Tags: 1			
b Investigations			
🗣 Graph	D Reset Gra	ph Add to Exp	ort et al.
		2010 2010 2010 2010 2010 2010 2010 2010	

Why it matters:

- Google Analytics tracking IDs are often reused across phishing domains, malicious sites, or cloned templates.
- While GA IDs alone may not prove attribution, when combined with other indicators (e.g., favicon hash, dom-hash, or TLS cert), they help cluster infrastructure belonging to the same threat actor or Tor operator.
- Many actors underestimate the traceability of third-party embedded analytics even Ransomware groups.

Unexpected Correlation from Cryptographic Materials


- Threat actors often simplify their operations by generating Tor onion services with custom "vanity" addresses—based on recognizable prefixes derived from cryptographic key fingerprints.
- While the exact logic behind the generation is not always disclosed, building a tree or graph structure of these vanity addresses can **reveal shared patterns** and uncover related services.

	-> Vanity Explorer:						
0	→ 3650	Show 10 ¢ entries	Search:				
	Vanity Length: 4	Length+1 Vanities	1 NB Domains	14 11			
		365cp	10				
		Showing 1 to 1 of 1 entries		Previous 1 Next			
	X Hide	•		🖪 Full			
	365c 10						

TLP:CLEA

Pivoting on Encrypted Messages and Metadata

- Sometimes, **collecting encrypted messages or public keys** can reveal unexpected links, especially when metadata is extracted from PGP blocks.
- Elements such as key IDs, user IDs, creation dates, or repeated usage of the same key across services can all serve as valuable pivot points.

- Pivoting is evolving from a manual, intuition-driven process into a reproducible, data-driven discipline—supported by open-source platforms like MISP and AIL.
- Uncommon indicators matter just as much as traditional ones, they often reveal what others overlook.
- Imperfect doesn't mean useless. Even outdated or colliding indicators can still provide valuable correlations.
- **Creativity is essential**, experimenting with new correlation methods leads to deeper insights and better threat discovery.

- AIL project¹⁰ : https://github.com/ail-project/ail-framework
- For questions, contact: info@circl.lu

¹⁰All techniques and indicators mentioned in these slides are implemented in the AlL project, using an instance backed by a three-year dataset collected from Tor hidden services and various social networks.

